Practical Sketching Algorithms for Low-Rank Matrix Approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Sketching Algorithms for Low-Rank Matrix Approximation

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image, or sketch, of the matrix. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably c...

متن کامل

Randomized single-view algorithms for low-rank matrix approximation

This paper develops a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provab...

متن کامل

Stochastic algorithms for solving structured low-rank matrix approximation problems

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal s...

متن کامل

Approximation Algorithms for l0-Low Rank Approximation

For any column A:,i the best response vector is 1, so A:,i1 T − A 0 = 2 n − 1 = 2(1 − 1/n) OPTF 1 OPTF 1 = n Boolean l0-rank-1 Theorem 3. (Sublinear) Given A ∈ 0,1 m×n with column adjacency arrays and with row and column sums, we can compute w.h.p. in time O min A 0 +m + n, ψB −1 m + n log(mn) vectors u, v such that A − uv 0 ≤ 1 + O ψB OPTB . Theorem 4. (Exact) Given A ∈ 0,1 m×n with OPTB / A 0...

متن کامل

Approximation Algorithms for $\ell_0$-Low Rank Approximation

We study the l0-Low Rank Approximation Problem, where the goal is, given anm×nmatrix A, to output a rank-k matrix A for which ‖A′ −A‖0 is minimized. Here, for a matrix B, ‖B‖0 denotes the number of its non-zero entries. This NP-hard variant of low rank approximation is natural for problems with no underlying metric, and its goal is to minimize the number of disagreeing data positions. We provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2017

ISSN: 0895-4798,1095-7162

DOI: 10.1137/17m1111590